منابع مشابه
ON COMMUTATIVE GELFAND RINGS
A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...
متن کاملOn Commutative Reduced Baer Rings
It is shown that a commutative reduced ring R is a Baer ring if and only if it is a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an extremally disconnected space; if and only if every non-zero ideal of R is essential in a principal ideal generated by an idempotent.
متن کاملon commutative reduced baer rings
it is shown that a commutative reduced ring r is a baer ring if and only if it is a cs-ring; if and only if every dense subset of spec (r) containing max (r) is an extremally disconnected space; if and only if every non-zero ideal of r is essential in a principal ideal generated by an idempotent.
متن کاملOn quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کاملNon-commutative reduction rings
Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Gröbner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2020
ISSN: 0166-8641
DOI: 10.1016/j.topol.2020.107120